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The dynamic mosaic phenotypes
of flowering plants

Summary

Ecological interaction and adaptation both depend on phenotypic

characteristics. In contrast with the common conception of the

‘adult’ phenotype, plant bodies develop continuously during their

lives. Furthermore, the different units (metamers) that comprise

plant bodies are not identical copies, but vary extensively within

individuals. These characteristics foster recognition of plant pheno-

types as dynamic mosaics. We elaborate this conception based

largely on a wide-ranging review of developmental, ecological and

evolutionary studies of plant reproduction, and identify its utility in

the analysis of plant form, function anddiversification.Anexpanded

phenotypic conception is warranted because dynamic mosaic

features affect plant performance and evolve. Evidence demon-

strates that dynamic mosaic phenotypes enable functional

ontogeny, division of labour, resource and mating efficiency. In

addition, dynamic mosaic features differ between individuals and

experience phenotypic selection. Investigation of the characteristics

and roles of dynamic and mosaic features of plant phenotypes

benefits from considering within-individual variation as a function-

valued trait that can be analysed with functional data methods.

Phenotypic dynamics and within-individual variation arise despite

an individual’s genetic uniformity, and develop largely by hetero-

geneous gene expression and associated hormonal control. These

characteristics can be heritable, so that dynamicmosaic phenotypes

can evolve and diversify by natural selection.

Introduction

Ecology and adaptive evolution poise on the phenotypes of
individual organisms. An organism’s biochemical, physiological,
morphological and behavioural characteristics set its capacity to
function in a specific environment. Interaction of an individual’s
phenotype with the opportunities and limitations presented by the
environment govern its realised growth, survival and reproduction.
In turn, populations grow or decline, affecting community
composition, ecosystem energy flows and nutrient cycles. If
phenotypic dissimilarity among individuals causes differential
survival and reproduction and is genetically determined, alleles
associated with more successful phenotypes will be more common
in the next generation (Endler, 1986; Barrett et al., 2019). Such

evolution alters the population’s genetic structure and enhances its
environmental interaction, further affecting population, commu-
nity and ecosystem organisation and dynamics (Bolnick et al.,
2011). Therefore, the phenotype is the nexus of biological diversity,
being both an organism’s interface with its environment and a
population’s vehicle of adaptation.

Despite its ecological and evolutionary significance, perspectives
on the phenotype are often limited. For example, thousands of
studies of phenotypic selection (Harder & Johnson, 2009;
Kingsolver et al., 2012) have assessed phenotypic selection using
single measurements of traits of adult individuals. This approach
implies that an individual’s phenotype is static and uniform. Stasis
may be relevant for qualitative traits, but this is rarely true of
continuous traits, if they develop during an individual’s life (Fusco,
2001; Donohue, 2014). Phenotypic uniformity at a given
developmental stage may be pertinent for organs, behaviours,
and so on, that occur once per individual, but not necessarily for
those with multiple realisations. Therefore, static uniformity will
often misrepresent an individual’s phenotype, its function and
evolutionary relevance (Diggle, 2003, 2014; Kingsolver et al.,
2015; Herrera, 2017).

Static uniformity is particularly inappropriate as a phenotypic
conception formetameric organisms such as plants andCnidarians.
The bodies of such organisms (hereafter plants) are integrated
collections of repeated units (metamers: Barlow, 1989). Plants
grow primarily by adding metamers, rather than enlargement of
each organ type, as in unitary animals. Such growth is enabled by
retention of pluripotent cells in meristems, which allows postem-
bryonic morphogenesis (Greb & Lohmann, 2016). Consequently,
organ initiation (including sex organs) and growth (including
regeneration and possibly clonal propagation) occur throughout
life, even after reproduction begins (Gaillochet & Lohmann,
2015). These architectural and ontogenetic plant characteristics
generate dynamic phenotypes (Sattler, 1990; Minelli, 2018),
involving ongoing birth, development and (programmed) death of
metamers (White, 1979). Furthermore, a plant is a phenotypic
mosaic if its organ copies differ developmentally, structurally and
physiologically (see Barrett & Harder, 1992; Diggle, 2003). For
clonal plants, this mosaic includes the physical individuals (ramets)
that comprise the genetic individual (genet) (Charpentier &
Stuefer, 1999; H€ammerli & Reusch, 2003). Consequently, a
plant’s dynamic mosaic phenotype includes the entire spatial and
temporal within-genet distribution of its components (also see
Diggle, 2003;Herrera, 2009; Kulbaba et al., 2017). Furthermore, a
genet’s performance depends on the integrated outcomes of all its
metamers during all their developmental stages (Harder et al.,
2004; Vallejo-Mar�ın et al., 2010; Donohue, 2014).

Here, we elaborate the concept of the dynamic mosaic
phenotype of plants and consider its developmental, ecological
and evolutionary implications.We review evidence supporting this
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conception and argue that broader appreciation of it will enrich the
understanding of plant function and adaptation. We focus on
angiosperm flowers and inflorescences, as they have received
considerable recent attention, and their spatial and temporal
variation directly affects plant fitness. Nevertheless, general
conclusions arising from this examination also apply to vegetative
structures and other metameric taxa. The conception of and
evidence for plant phenotypes as dynamic mosaics has been
developing for more than a century (see Schleiden, 1848).
However, this perspective has not previously been elaborated as
an articulated argument outlining facets of dynamic mosaic
phenotypes, from measurement to diversification.

Angiosperm phenotypes are mosaics

Metameric structure and pluripotent meristems allow plants to
produce multiple reproductive organs, either individually or
aggregated into inflorescences. If organs differ within a plant and
function interactively, division of reproduction over plant bodies
creates a phenotypic and functional mosaic. The mosaic nature of
the reproductive phenotype is obvious for plants with qualitatively
different flowers, such as Asteraceae with radiate inflorescences
(Fig. 1d; Harris, 1999), species with sterile peripheral flowers in
inflorescences (Fig. 1g,i; Morales et al., 2013; Park et al., 2019),
those with hermaphroditic sexual systems involving mixtures of
bisexual, female and/or male flowers (Fig. 1d,j; Diggle, 2003;
Torices et al., 2011; Tomaszewski et al., 2018), and species with
different fruit types (Imbert, 2002). More common, but less
apparent, is quantitative variation among flowers of individual
plants (Diggle, 2003; Herrera, 2009). Importantly, many quan-
titative traits vary systematically with flower position within
inflorescences, including flower size, pollen and/or ovule number,
and aspects of flowering phenology (Diggle, 2003; Ishii &Harder,
2012: Figs 1e,j,l, 2). Systematic variation must arise from corre-
sponding developmental variation, rather than developmental
instability.

Two nonexclusive processes can generate systematic variation
within inflorescences: plasticity induced by resource competition,
and position-dependent effects (Diggle, 1995, 2003). Resource
competition occurs when development of early flowers or fruits
usurps resources needed by later flowers and fruits (e.g. Ladio &
Aizen, 1999; Kliber & Eckert, 2004; Torices&M�endez, 2010). As
anthesis usually follows an ordered sequence within and among
inflorescences, competition could generate systematic gradients in
flower, fruit and seed traits. However, within-inflorescence gradi-
ents in floral traits commonly persist if competition is precluded by
preventing pollination of early flowers (reviewed by Diggle, 1995,
2003). This persistence demonstrates that a flower’s characteristics
can depend on its absolute position in the inflorescence, in addition
to its position (and development time) relative to competing
flowers. Diggle (1995) called such position dependence an
architectural effect.

The mosaic nature of plant phenotypes determines their
environmental interaction and how their function and adaptation
should be conceived and analysed. Just as amosaic image cannot be
appreciated fully by focusing on individual tiles, an individual leaf

or flower or even the average leaf or flower provides a limited view of
a plant’s phenotype and selection on its performance (Harder et al.,
2004; Herrera, 2009, 2017; Kulbaba et al., 2017). Because of
within-individual heterogeneity, trait variance is characteristic of
plant phenotypes (Herrera, 2009). Furthermore, if traits vary
systematically within plants, the variation pattern is also an essential
phenotype characteristic (Kulbaba et al., 2017). Given these
features, performance and selection depend on the aggregate
characteristics of an individual’s phenotype, which is an emergent,
synergistic property of the attributes and coordination of its
individual organs.

Angiosperm phenotypes are dynamic

The dynamics of angiosperm phenotypes involves three hierarchi-
cal components: continuous development of individual organs
from initial primordium to abscission; sequential production of
organs within and among branches, inflorescences and ramets
during growing/reproductive seasons; and, for perennials, changes
in organ production among seasons. For example, consider the life
of an individual protandrous flower (Figs 1a,b,e,f, 3). Being itself a
developmental and functional mosaic, a flower typically comprises
four organwhorls: a basal calyx (sterile), followed proximally by the
corolla (sterile), androecium (fertile) and gynoecium (fertile). Each
whorl has its own developmental sequences and functional
schedules. All whorls are initiated and begin developing relatively
simultaneously, but only the calyx interacts with the environment
during the bud stage, providing protection. At anthesis, the corolla
opens by rapid cell expansion and mediates pollination (perhaps
with the calyx). During the initial male phase, the anthers dehisce,
often sequentially (Fig. 1a,e), loading pollen onto pollen vectors,
and then stamens wilt (Fig. 1a) and perhaps abscise owing to
programmed cell death. Female phase follows when the stigma(s)
becomes receptive to pollen receipt and germination, often
enlarging (Fig. 1b). During flowering stage the corolla may
continue growing slowly and stamen and/or pistil growth or
movement may position anthers and stigmas suitably for pollen
exchange and to reduce sexual interference (Fig. 1a,b; Ruan &
Teixeira da Silva, 2011). Flowering stage concludes when
programmed cell death terminates stigma receptivity and the
corolla wilts or abscises. The ovary now grows rapidly, as
endosperms draw resources, embryos grow and tissues elaborate
to form the fruit. Fruit development ends with dehiscence or
dispersal, perhaps aided by a vector. For multiflowered species,
these events typically occur in a staggered manner among flowers
and fruits (Fig. 1c,e,f), often as the inflorescence expands. There-
fore, a plant’s reproductive season involves continual development,
often in direct aid of floral function.

Inflorescence and infructescence traits illustrate additional
temporal features of reproductive phenotypes (Harder &
Prusinkiewicz, 2013). The numbers of flowers and ripe fruits that
a plant displays simultaneously (display size) and the duration of its
reproductive season are emergent properties of more elemental
developmental traits (Meagher & Delph, 2001; Aizen, 2003;
Harder & Johnson, 2005). Specifically, display sizes depend on
‘birth’ and ‘death’ rates, like the size of any population, and season
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duration additionally depends on total bud number. Thus, the
number of new flowers opened per day (anthesis rate) and floral
longevity determine floral display size per inflorescence. Corre-
spondingly, a ramet’s or genet’s display size depends respectively on
the daily numbers of newly flowering inflorescences and ramets.
Consequently, a plant’s display size varies, unless all flowers open

simultaneously and have identical longevity. Display size dynamics
are further modified if anthesis rate and/or floral longevity vary
among flowers (e.g. Figs 1k, 2) and bud number varies among
inflorescences and ramets. Being emergent properties, display size
and reproductive-season duration can bemodified by temperature,
pollination and resources, etc., or by selection that alters flower

(a) (b) (e)

(d)

(i) (j) (k)

(l)

(h)

(f) (g)(c)

Fig. 1 Examples of mosaic and dynamic features of the reproductive phenotypes of angiosperms. Panels (a–c) illustrate bumble-bee pollinated Delphinium

glaucum, including: (a) amale-phase and (b) a female-phase flower (lower petals removed to expose undehisced (U), dehisced (D) and spent (S) anthers in (a)
and styles (S) in (b)); and (c) a racemewith lower, older female-phase and upper, youngermale-phase flowers.Manyfloral traits, including phenotypic gender,
vary with flower position in this species (Ishii & Harder, 2012). Also note in (a) that only stamens with dehiscing anthers are vertical, positioning pollen at the
mouth of the nectar spur (white petals), and that the styles and stigmas are not apparent; whereas in (b) stamens have wilted or abscised and the styles have
elongated. In (c) the nectar spur (N) and lower sepal (S) are identified for one flower. Panel (d) shows a raceme of hummingbird-pollinated Delphinium
cardinale, which differs frombee-pollinated delphiniums in that flowers open simultaneously and proceed relatively synchronously throughmale- and female-
phases (Harder et al., 2004). Panel (e) illustrates staggered flowering and anther dehiscence (U, undehisced; D, dehisced) in an Allium mongolicum

inflorescence. Panels (f–j) illustrate qualitatively different flower types within inflorescences, including: (f) female ray flowers (F) and bisexual disc flowers (B,
note dark anthers) of Ligularia przewalskii; (g) small central fertile flowers and large peripheral sterile flowers of Hydrangea serrata; (h) young yellow flowers
with receptive stigmas and polleniferous anthers, and postpollination orange flowers of Lantana camara; (i) dark fertile flowers and pale sterile flowers of
Muscari armeniacum; and (j) bisexual (B, note projecting styles) and male (M) flowers of Anticlea occidentalis. In addition to their qualitative differences,
bisexual andmaleA. occidentalis flowers differ in size, and bisexual flowers also vary in size with flower position (Tomaszewski et al., 2018). (k) Illustrates the
floral display of Satyrium longicauda, the size of which varies with pollinator visitation owing to pollination sensitivity of floral longevity (Harder & Johnson,
2005). Panel (l) illustrates systematic within-flower petal-size variation and within-inflorescence flower-size variation of Anthriscus sylvestris.
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birth or death rates (Meagher & Delph, 2001; Harder & Johnson,
2005; Gallwey, 2011). Although floral longevity (Ashman, 2004)
and fruit ripening (Seymour et al., 2013) are well studied from the
perspective of individual organs, their consequences for floral and
fruit display size remain largely unexplored. Even less is known
about the controls and consequences of floral anthesis rate.

Given its dynamic nature, when is a flower ‘mature’? Two
relatively abrupt events punctuate a flower’s continuous develop-
ment: perianth expansion (anthesis) marks the transition from bud
to flower stage; and perianth abscission denotes the shift from
flower to fruit stages, if development continues. The different
physiology, form and functions of each stage foster recognition and
analysis of buds, flowers and fruits as distinct entities. However, the

implication that reproductive phenotype is static during each state,
as implied by calling a bud, flower or fruit ‘mature’ ismisleading. At
no stage is a flower’s biochemistry, physiology or morphology
static. Similarly, flower and fruit display sizes change continuously
during a reproductive period (e.g. Fig. 2c). Consequently, no
instant during a plant’s reproductive season, or indeed its life,
adequately represents an individual’s phenotype. Instead,
angiosperm phenotypes include the developmental and phenolog-
ical components that govern the continual development and
coordination of reproduction (also see Diggle, 1993; Minelli,
2018).

Is an expanded phenotypic conception needed and
tractable?

Conception of plant phenotypes as dynamicmosaics is warranted if
it reveals unappreciated features of phenotypes, their development,
functions and evolution and is amenable to analysis. We now
address five questions concerning these requirements. How can
dynamic mosaics be characterised and represented in analyses of
phenotype function and adaptation? How is the development of
dynamic mosaics controlled? Does the dynamic mosaic funda-
mentally affect plant performance? If so, is the spatial�temporal
continuumamenable to natural selection? Finally, howdodynamic
mosaic phenotypes evolve and contribute to angiosperm diversity?

Measurement and analysis

Unlike unitary traits, such as a seed’s mass, a single (scalar)
measurement cannot represent an individual’s phenotype for traits
that vary among repeated parts (organs within flowers, flowers,
inflorescences, ramets) and/or through time (Diggle, 2014).
Relevant measurements depend on the nature of intraindividual
variation. In general, such variation can be represented by a trait’s
mean and variance, both of which can be included in statistical
analysis as a multivariate dependent or independent variable
(Herrera, 2009). However, if the phenotype varies systematically
on plant bodies or through time, trait variation is better viewed as
functions of space and/or time (Kingsolver et al., 2001; Kulbaba
et al., 2017; Gomulkiewicz et al., 2018). Basic representation of
such function-valued traits involves two vectors: one recording the
spatial or temporal positions of an individual’s measurements, P;
and the other recording the correspondingmetric values,Z, of those
measurements. This information is then used to characterise a
function summarising individual’s trait variation. If the relation of
Z to P is described adequately by parametric linear or nonlinear
regression, the set of parameter estimates (e.g. mean and slope for
linear regression) and residual variation could be used to represent
an individual’s phenotype (parameters-as-data approach: Kulbaba
et al., 2017). For more complex relations, a spline function of an
individual’s metric to position variables can be used as its
phenotypic representation (Fig. 4a) (functions-as-data approach;
Kulbaba et al., 2017; Gomulkiewicz et al., 2018).

The functions-as-data approach underlies functional data
analysis, a relatively new body of statistical methods (Ramsay &
Silverman, 2005; Wang et al., 2016) relevant for analysing

(a)

(b)

(c)

Fig. 2 Variation in mean (� SE) (a) number of new flowers per day (anthesis
rate), (b) floral longevity, and (c) floral display size for racemes of 29
Oxytropis splendens Douglas plants. In (a–c), inflorescences opened their
first flowersonDay1, and in (b)flowerposition is numbered fromthebottom
to the top flowers. Flowers open from bottom to top, so flowers that open
later are more distal on the inflorescence. In (c) the dashed and solid vertical
lines indicate themean dayswhen the first flowers beganwilting and the last
flower buds opened, respectively. Based on Gallwey (2011).

New Phytologist (2019) � 2019 The Authors

New Phytologist� 2019 New Phytologist Trustwww.newphytologist.com

ViewpointForum

New
Phytologist4



function-valued traits (Kulbaba et al., 2017). We briefly describe
two such methods pertinent to regression analysis (Morris, 2015),
which we illustrate with within-inflorescence floral variation of
Delphinium glaucum (Ranunculaceae; Fig. 1c). The lengths of a
lower sepal and the nectar spur were measured for seven, equally
spaced flowers per inflorescence. Therefore, the measurement for
flower j of plant i is the metric variable, zij, and flower position is pj
(numbered from bottom to top). Correspondingly, the measure-
ments for subject i can be represented functionally as
zij = fi(pj) + eij, where fi(pj) denotes the function’s value for the
trait at pj, and eij is the difference of zij from its functional
representation, fi(pj). We characterised fi(pj) as a spline (e.g.
Fig. 4a), which is a connected set of polynomial regressions defined
along consecutive intervals of P (Ramsay & Silverman, 2005).

Function-on-scalar regression (FOSR) is used to assess effects
of one or more continuous scalar independent variables on a
function-valued dependent variable. For example, consider the
effect of basal stem diameter (xi, scalar independent variable) on
spline functions of within-inflorescence variation in nectar-spur
length (fi(pj): functional dependent variable) for 57 D. glaucum
plants. For an independent variable to predict variation of a
function of spatial or temporal position among individuals,
both the intercept and associated (partial) regression coefficient
must also be functions of position, b0(pj) and b1(pj) respec-
tively. Therefore, the linear regression model for the estimated
effect of a single independent variable, X, on the function-
valued trait of individual i is

f̂i pj
� � ¼ b0 pj

� �þ b1 pj
� �

xi :

The fitted functional regression coefficient, b1(pj), for the
D. glaucum example (Fig. 4c) identifies a negative effect of stem
diameter on spur length for basal flowers (relative flower position,
P < 2), but a generally positive effect for more distal flowers.
Statistical significance of these effects is evident at positions for
which the observed F-test function comparing the estimated
regression function to 0 (e.g. blue curve in Fig. 4d) exceeds > 95%
of F-test functions based on random permutations of the
observations that disrupt systematic within-individual variation

(e.g. grey curves in Fig. 4d). Based on this approach, the stem-
diameter effect forD. glaucum is significantly negative for flowers at
positions P < 1.7 and significantly positive for 2.7 < P < 5.6 and
P > 6.6. These results reveal heterogeneous effects of plant size on
the spatial mosaic of inflorescences that traditional statistical
methods cannot detect.

Scalar-on-function regression (SOFR) is used to assess the effects
of function-valued (and scalar) independent variables on a scalar-
dependent variable, Y. To illustrate, consider the effect of within-
inflorescence variation in the length of the showy lower sepals
(fi(pj): functional independent variable) on overall fruit production
per plant (yi) for 64 D. glaucum plants. For this simple case with a
single, function-valued independent variable the linear regression
model is

ŷi ¼ b0 þ
Z P

0

b1 pð Þfi pð Þdp:

The second term represents the integrated effect on the
dependent variable of within-individual variation in the functional
independent variable over all positions. As this integrated effect is a
single value for each individual, only a scalar intercept (b0) is
needed and a single statistical test can be applied. For the
D. glaucum example illustrated in Fig. 4b, v2 = 9.71 (3 df,
P < 0.025). This analysis detected higher fruit production by
plants with relatively long lower sepals on the bottom and top
flowers within inflorescences but relatively short lower sepals on
middle flowers. These results expose differential effects of the
spatial mosaic of inflorescences on overall female reproductive
success that elude traditional statistical analysis.

Developmental control

The dynamic mosaic nature of plant phenotypes reflects the
primacy of development (broadly construed) in organising and
maintaining metameric plant bodies. Dynamics arise straightfor-
wardly from serial initiation and development of individual
metamers (Reeves et al., 2012). Serial initiation also influences
the instantaneousmosaic character of plants, if organs differ in their

Fig. 3 Phenologies of the four whorls during the life of a protandrous flower. Solid lines indicate periods when organs interact with the environment that
generally include active development (including programmed cell death), whereas dashed lines identify periods of development, but no ecological function.
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developmental stages. Relevant mosaic features therefore depend
on the relative timing of development of an individual’s organs and
its control. Less straightforward is the generation of differences
among organs at the same stage. As a plant’s cells are genetically
identical (barring somatic mutation), such heterogeneity could
reflect developmental instability (Møller & Shykoff, 1999) and/or
developmental plasticity (Gaillochet & Lohmann, 2015). How-
ever, only developmental plasticity can generate systematic trait
variation within individuals, so we focus on it here.

Although a plant’s cells all use the same instruction manual
encoded in their genes, the manual is implemented selectively and
with different emphases during development. Differential devel-
opment within plant bodies is evident in the morphological and
physiological variety of tissue and organ types and variation within

types. Developmental plasticity is well studied in the context of
phenotypic plasticity, whereby an individual’s conditions alter its
development, generating quantitatively (reaction norms) or qual-
itatively (polyphenism) different phenotypes (Gilbert & Epel,
2009). Owing to the metameric structure and indeterminate
assembly of plant bodies, phenotypic plasticity can contribute
significantly to the dynamic, mosaic nature of their phenotypes (de
Kroon et al., 2005), and their ability to contend with environmen-
tal heterogeneity. Obvious examples involve phenotypic effects of
among- and within-plant variation in nutrient availability includ-
ing systematic variation among flowers and fruits (Diggle, 1995;
Camargo et al., 2017; Spigler & Woodard, 2019). Less obvious,
but equally relevant, are floral and inflorescence responses to
inadequate pollination, including extended floral longevity,

(a)

(b)

(c)

(d)

Fig. 4 Examples of functional data analysis of within-inflorescence variation for Delphinium glaucum, including (a) representation of observed (symbols)
variation of lower sepal length (labelled S in Fig. 1c) with spline functions (curves) for six plants, (b) scalar-on-function regression (SOFR) of the effect of
variation in lower sepal lengthonoverall fruit number, and (c, d) function-on-scalar regression (FOSR)of the relationof variation inflower spur length (labelledn
in Fig. 1c) to basal stemdiameter. Panel (b) illustrateswithin-inflorescence variation of the estimated SOFR regression coefficient function (black curve)� 95%
confidence interval (grey band) for 64 inflorescences: the dashed horizontal line identifies no effect. Panels (c and d) respectively depict within-inflorescence
variation of the estimated FOSR regression coefficient function (� 95% confidence interval) and the associated observed (blue line) and permutation (grey
lines) F-test functions for 57 inflorescences.
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increased flower production and floral display size, modified plant
gender, increased production of cleistogamous flowers, and
breakdown of self-incompatibility (Lawrence, 1993; Diggle, 1994;
van Doorn, 1997; Vogler et al., 1998; Harder & Johnson, 2005;
Albert et al., 2011: Fig. 1k).

Phenotypic plasticity requires coordinated, differential regula-
tion of gene expression.Gene regulation is complex (Minelli, 2018)
and largely beyond the scope of our review. However, the roles of
various signalling molecules warrant mention. Signalling
molecules are synthesised in different locations (tissues) from their
site of action and so must be transported from cell to cell or via the
vascular system (Lough & Lucas, 2006; Park et al., 2017). Because
they act at a distance, signalling molecules convey information
about the state of the synthesis site to the target cells, possibly
altering their gene expression. For example, seasonal change in
photoperiod activates the FLOWERING LOCUS T gene in
Arabidopsis leaves but the resulting protein, florigen, acts on the
distant shoot apical meristem (SAM) after transport in phloem
(Corbesier et al., 2007). Florigen induces a switch to floral identity
in the SAM, which then generates a reproductive rather than
vegetative axis (Corbesier et al., 2007). It also mediates differential
flowering by apical and axillary meristems, influencing inflores-
cence architecture (Shalit et al., 2009). Signalling molecules
include various macromolecules, microRNA and, importantly,
hormones (Lough & Lucas, 2006; Park et al., 2017). Hormones
play central roles in coordinating gene expression and growth
within and among ramets (Alpert et al., 2002; Hill, 2015; Runions
et al., 2015). Through their actions, hormones mediate develop-
ment (Chandler, 2011; Diggle et al., 2011; Han et al., 2014),
including phenotypic plasticity (Farnsworth, 2004; Gaillochet &
Lohmann, 2015; Hill, 2015).

Unlike phenotypic plasticity, the developmental plasticity that
generates architectural effects depends on an organ’s absolute
position on the plant body (Diggle, 1995). Developmental
regulation of architectural effects has received little specific
attention. However, as for phenotypic plasticity, mediation of
differential gene expression by hormone gradients seems likely
(Diggle, 2014). For example, temporal auxin gradients in capitula
ofTripleurospermum (syn.Matricaria) inodora (Asteraceae) control
differential expression of two floral-meristem identity genes,
generating morphologically distinct outer ray florets (pistillate,
zygomorphic) and inner disc florets (bisexual, actinomorphic:
Zoulias et al., 2019). Gradient control of genes with quantitative
effects could similarly generate the systematic variation of contin-
uous traits that characterises architectural effects.

If temporal and spatial within-individual variation arise from
control of gene expression, does this control vary genetically among
individuals, as is required for variation patterns to respond to
natural selection? Studies comparing clonal replicates in different
environments detected significant among-genet variation for
within-individual variation in inflorescence characteristics, includ-
ing architectural effects (Diggle, 1993; Grimplet et al., 2019).
Moreover, Grimplet et al. (2019) found among-genet variation in
hormone concentrations and that phenotypic variation of mosaic
traits paralleled gibberellin variation. Using SNP-based estimates
of relatedness coupled with parameters-as-data characterisation of

within-individual variation (see the ‘Measurement and analysis’
subsection), Kulbaba et al. (2017) detected significant narrow-
sense heritability for declining anthesis rate within Delphinium
glaucum inflorescences. These results demonstrate that within-
individual variation can differ genetically among genets, rather
than simply being environmentally determined, and could be
modified by natural selection.

Functional significance

Being immobile, plants must contend with environmental uncer-
tainty at their establishment site and variable conditions for growth
and reproduction during their lives. How individuals can best
contend with environmental variation depends on its scale. Short-
term environmental variation is best accommodated by physio-
logical flexibility. Site uncertainty and unpredictable variation on a
timescale that allows the production of new metamers can also be
mitigated by individual and within-individual anatomical/mor-
phological plasticity, respectively. Bothphysiological flexibility and
morphological plasticity are suitable responses to stochastic
environmental change. If instead the environment varies pre-
dictably, systematic within-individual variation, including archi-
tectural effects, is advantageous. Unlike the preceding phenotypic
responses, such phenotypic variation is produced in anticipation of
consistent environmental heterogeneity. As systematic within-
individual variation is a fundamental feature of dynamic mosaic
plant phenotypes, we focus specifically on its functions.

Dynamic andmosaic features of plant phenotypes can provide at
least four nonexclusive benefits for reproduction.

Functional ontogeny As fitness is a lifetime characteristic,
selection optimises individual function during all life stages for
all organisms (Werner & Gilliam, 1984; Donohue, 2014), often
emphasising different functions during the lifecycle (for example
grow when young, reproduce later). Therefore, ontogeny simul-
taneously alters phenotype and function. For metameric organ-
isms, repeated, ongoing initiation, development and senescence of
individual structures generates constant flux in their specific
functions and in the mixture of functions in which an organism
engages simultaneously. For example, consider postflowering
development of vertebrate-dispersed fruits, as illustrated by tomato
(Tohge et al., 2014). Initially, fruits are green with relatively high
concentrations of defensive secondary compounds. Therefore, they
can photosynthesise, partially supporting seed development, are
relatively cryptic in the surrounding vegetation, and are somewhat
defended against predispersal predation. As seeds mature, auxin
concentration in enclosing fruit tissue declines, stimulating
increased ethylene production and sensitivity (Shin et al., 2019).
These hormonal shifts induce fruit colour change, reduced
concentrations of defensive compounds and increased sugar
concentrations, rendering fruits more apparent and desirable to
dispersal agents. As tomato plants produce inflorescences and
flowers within inflorescences sequentially (Park et al., 2012), the
number and proportions of fruits involved in photosynthesis,
defence and attraction of dispersal agents also change continuously
during a plant’s fruiting period. All features of this dynamic
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promote seed development and dispersal (in nonagricultural
situations). Such functional ontogeny is also evident in other
aspects of reproductive phenotypes, including dichogamy and
floral colour change, as mentioned below.

Mating efficiency Another advantage of dynamic reproductive
phenotypes arises if mating opportunities vary systematically
during a plant’s flowering period. Such variation could arise from
changes in the availability of mates, competitors and/or pollinators
that affect pollination success and self-pollination vs cross-
pollination (Aizen, 2001; Ison et al., 2014; Yin et al., 2016). Given
consistent variation in mating opportunities, displaying a fixed
number of flowers daily during the flowering period is likely to be
detrimental. Instead, large displays enhance attraction when
pollinators visit infrequently, whereas small displays are better
when pollinators visit often, because of reduced among-flower self-
pollination (geitonogamy) and associated pollen discounting (see
Harder & Johnson, 2005). Therefore, systematic temporal vari-
ation in mating conditions favours dynamic variation in anthesis
rate, floral longevity and inflorescence display size (e.g. Fig. 2).
Similarly, population-level changes in floral sex ratio associated
with dichogamy or monoecy favour increased female investment
when male flowers (and female mating opportunities) dominate,
but emphasis on male function when female flowers dominate
(Brunet & Charlesworth, 1995; Brookes & Jesson, 2010; Ishii &
Harder, 2012). As the roles and vulnerability of organs and
ecological opportunities are likely to vary temporally for all plant
species, dynamic phenotypes should be the rule, rather than the
exception.

Division of labour Production of multiple organ copies within
flowers, multiple flowers within inflorescences andmultiple ramets
per genet, perhaps coupled with functional ontogeny, allows
functional specialisation and/or reduced mating interference
among reproductive structures, promoting a genet’s overall
reproductive success. Adaptive division of labour is evident for
mosaics of qualitatively different flowers. Production of sterile
peripheral flowers (e.g. Fig. 1g,i; Morales et al., 2013; Park et al.,
2019) and retention of showy perianths that change colour after
flowers cease receiving pollen (e.g. Fig. 1h;Weiss&Lamont, 1997;
Brito et al., 2015) generally enhance pollinator attraction, without
increasing geitonogamy. Many features of mosaic phenotypes
implement division of labour, including production of distinct
feeding and pollinating anthers within flowers (heteranthery,
Vallejo-Mar�ın et al., 2009), segregated presentation of female(-
phase) and male(-phase) flowers within inflorescences (Fig. 1c,f;
Harder et al., 2000; Tomaszewski et al., 2018), and production of
separate vegetative and reproductive ramets (Charpentier &
Stuefer, 1999).

Resource efficiency This benefit of within-individual variation
arises from resource consequences ofmating efficiency and division
of labour. Sequential anthesis and pollination of flowers within
inflorescences often establishes a parallel gradient in fruit develop-
ment and resource demand by individual fruits. Accompanying
resource competition that consistently reduces fruit set or

proportional seed success in later fruits (Stephenson, 1981) favours
greater emphasis on female function of early flowers (e.g. more
ovules) and on male function of late flowers (e.g. ovary abortion).
This association of systematic gender variation with flowering
sequence within inflorescences is expected from both mating and
resource efficiency, so they should synergistically promote this
common pattern of within-individual variation (Austen et al.,
2015). Resource efficiency is also evident in size-dependent gender
variation among plants. For example, in Sagittaria latifolia
(Sarkissian et al., 2001) and Anticlea occidentalis (Fig. 1j;
Tomaszewski et al., 2018) average production of female and
bisexual flowers, respectively, increases with plant size, whereas that
of male flowers does not vary.

This overview demonstrates some of the diverse complementary
benefits of systematic within-individual variation. With respect to
reproduction, these benefits arise frommating quantity and quality
and the resource economy of fruit and flower production.Whether
such variation is favoured depends on its benefits and costs. For
example, floral traits that influence pollen exchange with pollina-
tors should vary little within and among plants, because of the
benefits of consistent pollen placement on pollinators’ bodies
(Diggle, 2014). Nevertheless, the prevalence of systematic tempo-
ral and spatial within-individual variation, including architectural
effects, among angiosperms indicates widespread benefits of
dynamic, mosaic phenotypes.

Selection

If dynamic mosaic phenotypes promote individual performance
(see the ‘Functional significance’subsection) and are heritable (see
the ‘Developmental control’ subsection), their characteristics will
evolve by natural selection. We now address two aspects of this
selection: evidence for relevant phenotypic selection, and particular
features of selection thatmight shape adaptation of dynamicmosaic
phenotypes.

Past studies of phenotypic selection on reproductive traits largely
adopted the flower-centred (floricentric: Harder et al., 2004)
perspective (e.g. Stebbins, 1950) that has dominated the analysis of
plant reproduction for over two centuries. For example, all 56
studies of phenotypic selection on reproductive traits reviewed by
Harder & Johnson (2009) considered the traits of one or the
average flower per plant and only 20 studies considered basic
aspects of the reproductive mosaic, such as total flower number or
the number of open flowers. Only 29% of the 386 selection
gradients for floral traits estimated by these studies detected
significant selection. Harder & Johnson (2009) suggested that this
relatively low frequency could arise if phenotypic selection is
typically studied during periods of evolutionary stasis, when
selection onfloral traits isweak and inconsistent.Our conceptionof
phenotypic characteristics suggests the additional possibility that
floricentric analysis provides an incomplete perspective on selection
of inherently dynamic, mosaic phenotypes.

Herrera’s (2009) analyses of phenotypic selection on within-
individual variation first demonstrated this possibility. He studied
10 floral traits for six species, simultaneously estimating selection
gradients for trait means and within-plant variances (see the
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‘Measurement and analysis’ subsection). All 10 analyses that
included trait variances detected significant selection compared
with significant selection for only five analyses that considered the
mean alone (also see Palacio et al., 2016; Arceo-G�omez et al.,
2017). The contrasts of selection on mean vs variance and of these
results with the low evidence of selection detected by previous
phenotypic-selection studies signal that selection acts more perva-
sively on the reproductive mosaic of angiosperms than on features
of individual or ‘typical’ flowers.

The nature of phenotypic selection could be evenmore intriguing
than Herrera’s study illustrates, as he did not consider selection on
systematic and dynamic aspects of within-individual variation.
Phenotypic selection on these features can be assessed by treating
them as function-valued traits (e.g. Fig. 4a) that are then included as
independent variables in regressions of variation in plant perfor-
mance (see the ‘Measurement and analysis’ subsection; Kulbaba
et al., 2017). For example, Fig. 4(b) illustrates phenotypic selection
on within-inflorescence variation of lower sepal length for
Delphinium glaucum (see Fig. 1c), as detected by SOFR. This
analysis revealed heterogeneous selection within inflorescences,
being positive for bottom and top flowers, but negative for middle
flowers. Furthermore, this regression model described variation in
fruit set better than models that included only the trait mean
(floricentric perspective) or the mean and variance (Herrera
approach) for individual plants (Clocher, 2017). Such results
demonstrate phenotypic selection on systematic within-individual
variation that could modify variation patterns, if they are heritable.

Two aspects of selection are especially pertinent to adaptation of
systematic within-individual variation. First, phenotype develop-
ment imposes serial dependence among phases within organs and
among sequential organs owing to pleiotropy (Donohue, 2014;
Smith, 2016), or allocation constraint (Lloyd, 1980; Ashman &
Schoen, 1997; Torices & M�endez, 2010). Serial dependence
creates correlations of the same trait at different times (see
Donohue, 2014), and of different floral, fruit, seed or inflorescence
traits (e.g. Routley&Husband, 2005; Sargent et al., 2007). On the
one hand, events early in the lives of reproductive structures (e.g.
number of ovules initiated) can establish the capacity for later
events (e.g. seed production: Lloyd, 1980). On the other hand,
characteristics of late stages may determine adaptive options for
characteristics of earlier stages. For instance, selection of small
flowers that facilitate pollination by wind or small insects may be
enabled by initiation of few ovules in flower buds. In either case, the
response to selection on a feature of one reproductive stage will
depend on correlated consequences for other stages (e.g. Routley&
Husband, 2005). Therefore, selection should favour coordinated
development of buds, flowers, fruits and inflorescences, whichmay
generate outcomes different from those expected from direct
selection on the focal stage. Furthermore, because of serial
dependence, morphological evolution of plant reproductive organs
should commonly involve heterochrony, or change in temporal
aspects of development; specifically rate and timing (see Li &
Johnston, 2000; Buend�ıa-Monreal & Gillmor, 2018; Box 1).

The second feature, genetic accommodation, relates to selection
on mosaic variation. We explain accommodation with respect to
the evolution of architectural effects, but it applies also to

phenotype dynamics. Architectural effects could evolve via genetic
accommodation if chronically poor success of reproductive organs
at some positions on plant bodies favours genetically regulated
gradients in flower/fruit development (Brunet & Charlesworth,
1995; Diggle, 2003; Diggle &Miller, 2013). Variable success can
be an intrinsic feature of the structure of plant bodies, depending on
the proximity of organs to vegetative resource sources along
branches and the relative timing of their resource demand. Chronic
variation could also arise from structured environmental interac-
tion, such as that generated by seasonal dynamics of pollinator
phenology or populationfloral sex ratio (e.g. Aizen, 2001). In either
case, individuals whose phenotypic variation promotes reproduc-
tive performance compared with that of individuals with other
variation patterns should generally produce more offspring. The
appropriate variation pattern could arise fromphenotypic plasticity
or architectural effects. However, architectural effects are likely to
contend with predictable intrinsic or extrinsic environmental
variation more efficiently (Diggle & Miller, 2013). If so, architec-
tural effects could arise as consistent selection transfers control of
within-individual variation from phenotypic plasticity to geneti-
cally based regulation of gene-expression gradients over generations
(see Diggle & Miller, 2013; Ehrenreich & Pfennig, 2015).
Nevertheless, retention of some phenotypic plasticity, in addition
to architectural effects, should often help tomitigate unpredictable
environmental variation. Therefore, dynamic phenotypic mosaics
should commonly incorporate both architectural effects and
phenotypic plasticity, as is commonly observed (Diggle, 2003).

Diversification

Angiosperm reproductive traits have diversified extensively as
selection generated alternative solutions to plant immobility and
reliance on pollen vectors for outcrossing. These solutions reflect
opportunities and limitations afforded by metameric plant bodies
(e.g. Torices et al., 2019), including the dynamic mosaic nature of
reproductive phenotypes (see the ‘Functional significance’ subsec-
tion). Consequently, evolution of the dynamicmosaic is integral to
angiosperm diversification. Dynamic diversity is evident in
interspecific variation of flower development from bud to ripe
fruit, floral longevity, inflorescence display size, and clonal
dynamics (e.g. Bertin & Newman, 1993; Ashman, 2004; Harder
et al., 2004; see Fig. 1c,d). Mosaic diversity is also prevalent, most
obviously for species in which individuals present several flower
types (Renner & Ricklefs, 1995; Vallejo-Mar�ın & Rausher, 2007;
Mamut & Tan, 2014), or exhibit floral colour change (Weiss &
Lamont, 1997). Differing systematic within-plant variation of
floral traits is also known for > 28 families (Diggle, 2003 (based on
contemporary taxonomy);Kulbaba et al., 2017), which is doubtless
a gross underestimate. Therefore, diversification of dynamic
mosaic phenotypes is likely to be a pervasive, if poorly studied,
component of the evolution of the remarkable reproductive variety
of angiosperms.

Phenotypic diversification requires the alteration of underlying
developmental programmes (Arthur, 2011; Minelli, 2018). Much
within-individual variation is likely to have arisen from heritable
gradients of signalling molecules that control developmental
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heterogeneity (see the ‘Developmental control’ subsection), in
which case diversification of dynamic mosaics requires gradient
modification. Three features of developmental evolution seem
germane: genetic accommodation in novel reproductive environ-
ments; developmental modularity; and modes of developmental
modification. We addressed genetic accommodation above
(‘Selection’), so we consider only the latter two features here.

Developmental modularity arises from integration of net-
works of interacting processes that generate structures or
biochemical products (Klingenberg, 2008). Modules exist
because of their integration and need not correspond to a
specific structure. Importantly, for metameric organisms, devel-
opmental module 6¼ metamer. For example, a network of

processes could govern gynoecium development of all a plant’s
flowers, integrating characteristics of multiple metamers.
Because of integration, a module’s features correlate strongly,
so change in one process has multiple effects that can constrain
module evolution. By contrast, traits of different modules often
correlate weakly and are more amenable to independent
evolution (Diggle, 2014). For phenotypic mosaics, modularity
allows contrasting within-individual variation among modules.
For example, gynoecium and androecium characteristics often
vary differently with flower position within inflorescences,
creating within-individual gender variation (Diggle, 2003; Ishii
& Harder, 2012). Such module independence should facilitate
diversification of phenotypic mosaics.

Box 1 Examples of the diversification of dynamic mosaics

In general, lineages diversify phenotypically as different populations adapt to contrasting local environmental conditions. Associated evolution of
morphology involves one or more of four modes of developmental change. Here, we present examples of these modes that specifically
demonstrate their relevance for the diversification of dynamic mosaic phenotypes.

Heterochrony: Changes in the relative onset, rate and/or termination of developmental processes commonly underlie plant trait diversification (Li &
Johnston, 2000; Lemmon et al., 2016; Buend�ıa-Monreal & Gillmor, 2018), often as means of implementing changes in pollination systems
(Armbruster et al., 2013; Strelin et al., 2018), mating systems (Li & Johnston, 2010) or sexual systems (Strittmatter et al., 2008). Two examples
specifically illustrate heterochronous diversification of dynamic mosaics. The first entailed abbreviated development of male flowers in monoecious
inflorescences of some Madagascar Dalechampia species (Armbruster et al., 2013). As a consequence, these flowers barely open, requiring pollen-
collecting pollinators to vibrate male flowers to extract pollen. The evolution of the bud-like form of male, but not female, flowers altered the
phenotypic mosaic and occurred in association with a pollinator transition from generalised pollen-feeding insects to pollen-collecting bees. The
second example involves Delphinium cardinale (Fig. 1d), a derived hummingbird-pollinated species in a largely bumble-bee-pollinated clade
(Harder et al., 2004). Flowers of all Delphinium species are protandrous. In contrast with the staggered acropetal anthesis of bee-pollinated species,
D. cardinale flowers open simultaneously and pass synchronously through male- and female-phases (e.g. Fig. 1c). These contrasting flowering
patterns both limit geitonogamy because hummingbirds move upward less consistently than bumble-bee pollinators while feeding on vertical
inflorescences (Harder et al., 2004: also see Harder et al., 2000). Together, these examples illustrate roles of heterochrony in diversification of
mosaic and dynamic features of plant phenotypes, in the first case requiring modularity and in the second enhancing it.

Heterotopy: Spatial change in development seems most relevant to diversification of the mosaic character of plant phenotypes. Obvious examples
include division of labour involving the same organ type within flowers or different flower types within inflorescences (see the ‘Functional
significance’ subsection: Baum & Donoghue, 2002). Indeed, variation in division of labour, likely arising via heterotopy, is a central theme in the
evolution of both hermaphroditic sexual systems that involve combinations of female, male and/or bisexual flowers (Torices & Anderberg, 2009;
Bello et al., 2013; Diggle & Miller, 2013) and pollination systems involving sterile peripheral flowers within inflorescences to enhance pollinator
attraction (Donoghue et al., 2004). That the necessary changes, such as arrest of gynoecium or androecium development (Diggle et al., 2011),
affect just a subset of a plant’s flowers also provides clear evidence that modularity greatly facilitates the evolution of mosaic phenotypes by
heterotopy.

Heterometry: Changes in the amount of gene products that regulate development are likely widely involved in diversification of dynamic mosaic
phenotypes, as their existence requires such variation. Prusinkiewicz et al.’s (2007) theoretical model of diversification of inflorescence architecture
is informative in this context. This model considers a temporal decline in the concentration of a hypothetical substance, veg, that controls the
identity of individual meristems. Specifically, if veg >V a meristem in a developing inflorescence produces a vegetative metamer (shoot segment
with associated meristem), whereas when veg falls below this threshold it produces a flower, which is a terminal fate. Given this criterion, the
temporary difference in veg concentrations between the apical meristem, vegA and its most recent daughter lateral meristem, vegL, governs
inflorescence architecture. Specifically, vegL = vegA generates a panicle, vegL < vegA generates a raceme, and vegL > vegA generates a cyme. A
subsequent comparative transcriptome study of wild-type and mutant tomato lines and a wild relative with different inflorescence architectures
detected contrasting temporally variable gene-expression patterns consistent with this model (Park et al., 2012). These results illustrate that
characteristic qualitative differences between species (in this case inflorescence architecture) can evolve by heterometric changes in the quantitative
control of development. Such changes could also underlie diversification of continuous and discrete variation among flowers within inflorescences.

Heterotypy: Changes in transcription factors have been little studied in the context of within-individual variation, but a transition that occurred
during the domestication of maize (Wang et al., 2005) illustrates their relevance to mosaic diversification. In the wild progenitor of maize, a stony
casing (cupule + glume) protects individual fruits (kernels) from damage during ingestion by mammalian seed dispersers. In maize, this structure is
greatly reduced owing to substitution of a novel mutation at a single locus that encodes a transcription regulator. This genetic change reduces the
stony casing to a remnant, making the kernel edible. Because this substitution affects female inflorescences, but not male inflorescences,
heterotypic (and heterotopic) modification altered the mosaic phenotype in the maize lineage. Thus, heterotypic evolution of a mosaic phenotype
enabled a major change in human diets.
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The evolution responsible for phenotypic diversification
generally involves four nonexclusive modes of developmental
change (Arthur, 2011): heterochrony – altered relative timing
of developmental events; heterotopy – altered relative location
of specific developmental events; heterometry – altered amount
of gene product; and heterotypy – structural change of
transcription-factor proteins involved in gene regulation.
Despite limited studies of the development and evolution of
within-individual variation, some evidence illustrates involve-
ment of these evolutionary modes in the diversification of
dynamic mosaic phenotypes (see e.g. Box 1). Given its
temporal effects, heterochrony is obviously relevant to diversi-
fication of phenotype dynamics (e.g. see Harder et al., 2004:
Fig. 1c,d). Heterochrony may commonly underlie such diver-
sification because many expressed genes exhibit age-dependent
expression (Park et al., 2012) and it adjusts developmental
schedules, rather than rearranging ontogeny and disrupting
modular integration (Gould, 2002). Similarly, heterotopy is
obviously relevant to mosaic diversification, as it involves
spatial changes in development. The metameric structure of
plant bodies allows two types of heterotopy: within-structure
heterotopy, such as conversion of protective sepals into
attractive organs within flowers; and among-structure hetero-
topy, such as evolution of different flower types within or
among inflorescences from ancestors with a single type.
Therefore, heterotopy is likely to underlie diversification of
division of labour within plant bodies (e.g. Donoghue et al.,
2004; Torices & Anderberg, 2009; Armbruster et al., 2013;
Diggle & Miller, 2013). Note that among-structure heterotopy
will often involve differential implementation of other modes
of developmental change, such as heterochrony, among
metamers (e.g. Armbruster et al., 2013). Fewer examples are
evident for involvement of heterometry (perhaps Diggle &
Miller, 2013) and heterotypy (Wang et al., 2005) in diversi-
fication of dynamic mosaics, perhaps because they are more
difficult to detect. Nevertheless, heterometry may frequently
alter systematic within-individual variation, as both involve
quantitative variation in the gene products that regulate
development (see ‘Developmental control’). Importantly,
heterometry generates interspecific allometry (Arthur, 2011),
which is likely to feature often in the diversification of mosaic
phenotypes.

This brief overview illustrates that the complete spectrum of
modes of developmental evolution underlies diversification of
dynamic mosaic phenotypes. Furthermore, these modes can be
involved in various combinations (e.g. Armbruster et al., 2013;
Wang et al., 2005). This interacting variety facilitates develop-
mental modification, allowing dynamic mosaics to evolve and
diversify in response to new environments. Indeed, many examples
described in Box 1 are associated with transitions in pollination
systems (e.g. Donoghue et al., 2004; Harder et al., 2004; Arm-
bruster et al., 2013; Strelin et al., 2018) or sexual systems (e.g.
Torices & Anderberg, 2009; Diggle &Miller, 2013), contributing
broadly to diversification of angiosperm reproduction. The
different modes of developmental change likely also underlie
diversification of systematic within-individual variation, but this

influence attracts less attention than qualitative change than the
evolution of distinct flower types.

Conclusion

The evidence reviewed above illustrates clearly that, rather than
static uniformity, plant phenotypes change continuously during
their lives and include extensive, often systematic, within-individ-
ual variation. This dynamic mosaic can be heritable, affects plant
function and is subject to phenotypic selection. Consequently,
developmental, morphological, ecological and evolutionary anal-
ysis that ignores the dynamic mosaic character of plant phenotypes
may often lead to incomplete or inaccurate conclusions. We
specifically elaborated this perspective with respect to plant
reproduction; however, vegetative structures are similarly dynamic
and variable within individuals (Herrera, 2009). Therefore, the
dynamic mosaic perspective applies broadly to plant phenotypes
and should therefore be incorporated generally into the under-
standing of how phenotypes arise, function and evolve.
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