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Abstract Production of multiple flowers in inflorescences allows the reproductive phenotypes of individual plants
to include systematic among-flower variation, which could be adaptive. Systematic trait variation within
inflorescences could arise from resource competition among flowers, or be a developmentally determined feature
of flower position, regardless of resource dynamics. The latter, architectural effect typically manifests as continuous
floral variation within inflorescences. For architectural effects to be adaptive, floral trait variation among individuals
must covary with reproductive performance and be heritable. However, heritability and phenotypic selection on
gradients of variation cannot be estimated readily with traditional statistical approaches. Instead, we advocate and
illustrate the application of two functional data analysis techniques with observations of Delphinium glaucum
(Ranunculaceae). To demonstrate the parameters-as-data approach we quantify heritability of variation in anthesis
rate, as represented by the regression coefficient relating daily anthesis rate to inflorescence age. SNP-based
estimates detected significant heritability (h2¼ 0.245) for declining anthesis rate within inflorescences. Functional
regression was used to assess phenotypic selection on anthesis rate and a floral trait (lower sepal length). The
approach used spline curves that characterize within-inflorescence variation as functional predictors of a plant’s
fruit set. Selection on anthesis rate varied with inflorescence age and the duration of an individual’s anthesis period.
Lower sepal length experienced positive selection for basal and distal flowers, but negative selection for central
flowers. These results illustrate the utility and power of functional-data analyses for studying architectural effects
and specifically demonstrate that these effects are subject to natural selection and hence adaptive.
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1 Introduction

Reproduction by individual angiosperms is typically diversified
among multiple flowers, which are usually aggregated in
inflorescences (Harder & Prusinkiewicz, 2013). Production of
multiple flowers allows for trait variation among flowers, in
which case a plant’s phenotype for a given floral trait includes
its mean, variation and covariation within inflorescences
(Diggle, 2003; Herrera, 2009). As development of all flowers
within an inflorescence is controlledby the samegenome,floral
variation could simply represent phenotypic plasticity, and so
be determined by ecological circumstance, such as resource
competition among early- and late-pollinated flowers (re-
viewed by Diggle, 2003). However, a systematic gradient in
floral traits within an inflorescence could also be subject to
controlled variation ingeneexpression andfloral development,
rendering it an intrinsic feature offlower position (Diggle, 2003,
2014). To the extent that architectural effects confer functional
benefits (e.g., Brunet & Charlesworth, 1995; Kudo & Kasagi,
2004; Cameron-Inglis, 2016) and differ genetically among
individuals they could be subject to natural selection.

Statistical methods typically applied in analyses of natural
selection either cannot be used straightforwardly, or are
inappropriate for architectural effects. The heritable basis for a
gradient of within-individual variation cannot be addressed
using traditional quantitative genetics, as trait means do not
capturepatterns of systematic variation (Kingsolver et al., 2001;
Stinchcombe et al., 2012). Similarly, standard regression
methods for quantifying phenotypic selection (e.g., Lande &
Arnold, 1983) are not applicable if the trait of interest is a
gradient of within-individual variation. In particular, fitness
cannot beassessed for individualflowerpositions, asfitness is a
plant-level trait and, again, a mean cannot represent within-
individual variation and co-variation. To deal with overall trait
variation in phenotypic selection studies, Herrera (2009)
proposed including an individual’s mean and variance as
independent variables in regression analyses and demon-
strated several cases of phenotypic selection on variance,
including some for which selection on the mean was not
evident (also see Arceo-G�omez et al., 2017). However, this
approach does not account for the systematic within-individual
variation that characterizes architectural effects.
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A relatively new body of statistical methods, known as
functional data analysis (Ramsay & Silverman, 1997, 2005),
provides techniques for addressing these problems. These
methods treat patterns of variation as functions, which are
then represented in statistical models as equivalent to
dependent and/or independent variables. In the context of
within-individual variation, such patterns are known as
function-valued traits (Kingsolver et al., 2001). Functional
data analysis can be applied directly in the analysis of many
aspects of organismal biology, including growth (Kingsolver
et al., 2001) and continuous phenotypic responses to
environmental change (Stinchcombe et al., 2012).

In this manuscript, we illustrate the utility of these
techniques for analyzing heritability of, and phenotypic
selection on, systematic gradients of floral variation within
inflorescences. We begin with a brief overview of relevant
approaches for assessing both heritability and the relation of a
single fitness measure to function-valued traits. We then
illustrate these methods with examples drawn from our
studies of Delphinium glaucum S. Watson (Ranunculaceae),
which exhibits gradients in various floral traits within its
vertical racemes (Gallwey, 2011; Ishii & Harder, 2012). Our
intention here is to introduce the general application of
methods to the study of inflorescences, rather to provide a
detailed interpretation of the nature of selection on
D. glaucum inflorescences.

2 Brief Overview of the Analysis of
Function-Valued Traits
We illustrate two approaches to the analysis of function-
valued traits: parameters as data, and functional regression.
As the name suggests, the parameters-as-data approach uses
estimates of a parametric model that characterize an
individual’s variation in a trait of interest in standard analyses
of heritability (or evolvability) or phenotypic selection
(Hernandez, 2015). As an example, Herrera (2009) used the
variance of within-plant variation in floral traits as an
independent variable in regressions assessing sources of
among-plant variation in fruit number. Analysis of architec-
tural effects will be more complex, because within-individual
variation must be summarized with estimates of parameters
that characterize the relation of floral-trait values to flower
position. In the simplest case, this relation could be
represented by the slope of the linear regression (perhaps
in link space for a generalized linearmodel) for each individual.
More generally, parameter estimates for nonlinear models
may need to be estimated. The suitability of this approach will
depend on identification of an appropriate parametric model
to represent within-inflorescence variation. Ideally, the use of
parameter estimates in subsequent analyses would account
for the statistical uncertainty associated with these estimates.
For example, regression analysis to assess phenotypic
selection could be weighted by 1/s2, where s2¼ (n�SE)2 is the
sampling variance of a parameter estimate, which can be
calculated from the sample size (n) and standard error
associated with the estimate (SE). Below, we use this
approach to estimate heritability in changes in the number

of new flowers opened per day (anthesis rate) as flowering
progresses within inflorescences.

Functional regression is specifically relevant to the analysis
of phenotypic selection. As amethodwithin the larger body of
techniques for functional data analysis it uses non-parametric
curve-fitting methods to characterize variation in a function-
valued trait (Ramsay & Silverman, 2005; Morris, 2015). These
methods typically involve basis-function expansions using
splines, Fourier series, or Legendre polynomials. Below, we
use penalized splines (p-splines: Goldsmith et al., 2011) to
depict variation in lower sepal length among flower positions
within D. glaucum inflorescences. Analysis of phenotypic
selection involves regressing single “fitness” measurements
for individual plants (e.g., total fruit or seed number) against
the fitted function (e.g., spline) for within-plant variation and
perhaps additional plant-level covariates (scalar on function
regression: Ramsay & Silverman, 2005). Rather than estimat-
ing a single (partial) regression coefficient for function-valued
traits, functional regression estimates the relation of the
regression coefficient for the effect of the function-valued
trait (e.g., lower sepal length) on fitness (e.g., fruit number) to
the underlying position on the trait gradient (e.g., flower
position). This approach accounts for within-individual varia-
tion and covariation, including the associated measurement
uncertainty.

3 Material and Methods
Delphinium glaucum is a hermaphroditic perennial that
produces 5–75 purple, zygomorphic flowers along racemose
inflorescences. As for many other bumble-bee pollinated
angiosperms, D. glaucum flowers open sequentially from
bottom to top (acropetally). After flower opening, anthers
dehisce and present pollen during a 2–4 day male phase,
followed by the onset of stigma receptivity during a 2–3 day
female phase (Ishii & Harder, 2012). We studied a population
of approximately 100 D. glaucum plants on Moose Mountain
(50°54000.500N, 114°45017.100W), Alberta, Canada.

3.1 Data collection
Here, we report results for two function-valued traits, one
phenological and one morphological, measured separately
during 2014 and 2015. During 2014, we recorded the number of
new flowers that opened daily on each plant during the entire
flowering season (middle July tomiddle August) for 110 plants.
In this case, anthesis rate was the trait of interest, which could
vary with the number of days elapsed since the first flower
opened on an inflorescence (inflorescence age). For
D. glaucum, anthesis rate generally declines with inflorescence
age (Gallwey, 2011). Total seed number was used as the
measure of female fitness.

During 2015, we studied 64 individuals, measuring linear
floral traits for seven evenly-spaced flowers along each
inflorescence. Here, we consider variation in the length of a
lower sepal, measured with digital calipers, which decreases
from basal to distal flowers (Ishii & Harder, 2012).We recorded
the position of each sampled flower from the bottom of the
inflorescence as relative flower position (1–7), which identified
which seventh of the inflorescence a flower represented. Fruit

560 Kulbaba et al.

J. Syst. Evol. 55 (6): 559–565, 2017 www.jse.ac.cn



set was recorded for all flower positions and total fruit
production was used as ameasure of a plant’s female success.

For plants sampled during 2014, we performed genotyping-
by-sequencing to acquire sufficient genetic markers for
accurate measurement of genetic relatedness and heritability.
DNA was extracted from dried leaf tissue using a modified
cetyltrimethylammonium bromide (CTAB) technique (Doyle &
Doyle, 1987) with RNAse A (ThemoFischer Scientific). Genomic
library preparation was performed at the Institut de Biologie
Int�egrative et des Syst�emes (IBIS, University of Laval, Laval,
Quebec) according to the protocol of Poland et al. (2012).
Libraries were then sequenced on an Illumina HiSeq2000 at
the Genome Quebec Innovation Centre (McGill University,
Quebec). From the resulting 187 million sequence reads, we
identified 10458 variable SNP loci using the STACKS v 9.2
pipeline (Catchen et al., 2011, 2013).

3.2 Data analysis
To illustrate the overall relation of lower sepal length to
relative flower position and of anthesis rate to inflorescence
age, we plotted variation in the relevant least-squares means
(�SE). These means were estimated based on generalized
linear mixed models, as implemented in the glimmix
procedure of SAS/STAT 14.1 (SAS Institute Inc., 2015). Lower
sepal length was modeled with a normal distribution and
identity link function, whereas anthesis rate was modeled
with a negative binomial distribution and ln link function. Both
analyses accounted for random variation among plants and
correlated responses within plants.

As an example of the parameters-as-data approach, we
assessed the heritability of the regression coefficient (c) from
plant-specific generalized linear models relating anthesis rate
to ln(inflorescence age) for the 110 plants sampled during
2014. The generalized linear models were fit using the glimmix
procedure of SAS/STAT 14.1 (SAS Institute Inc., 2015), with a
negative binomial distribution and ln link function. We
determined genetic relatedness among the sampled plants
with the program GCTA v 1.26 (Yang et al., 2011). This program
used restricted maximum likelihood to determine the amount
of among-plant variation in c that was associated with
genotypic variation in the 10458 SNPs. To implement this
analysis, we first constructed a binary PED file with the PLINK
whole genome tool (Purcell et al., 2007).

We assessed phenotypic selection on gradients of variation
in lower sepal length and anthesis rate with functional
regression, as implemented in the REFUND package (Gold-
smith et al., 2016) in the R statistical environment (R Core
Team, 2016). REFUND is particularly efficient for functional
regression, as it employswrapper functions that automatically
fit various functional forms to predictors using a generalized
additive mixed-model approach (Breslow & Clayton, 1993; Lin
& Zhang, 1999). We specifically used the penalized functional
regression function (pfr; Randolph et al., 2012) to characterize
gradient functions with penalized splines.

The analysis of selection on lower sepal length considered a
plant’s total fruit set as the dependent variable and used a
linear function predictor (lf, Goldsmith et al., 2011) to fit p-
splines characterizing trait variation with respect to relative
flower position. Total plant fruit production was modeled as a
Poisson distribution with a ln link function. The analysis also

included the logarithm of total flower number as a covariate
for explaining fruit set variation.

The analysis of phenotypic selection on anthesis rate
variation used a slightly different approach. In this case, we
used total seed number as the dependent variable and p-
splines to characterize the relation of anthesis rate to
inflorescence age. However, in this case the functional
relations could vary, depending on the maximum age at
which the last flower opened on inflorescences (i.e., the
domain of variation). To accommodate this variation, we used
a linear variable-domain function (lf.vd) to fit thin-plate splines
with second-order penalization (Gellar et al., 2014).

4 Results
For the sampled plants, we observed similar patterns of
morphological and phenological variation within inflorescen-
ces to that reported previously for another Delphinium
glaucum population (Gallwey, 2011; Ishii & Harder, 2012).
Mean lower sepal length ofD. glaucum flowers decreasedwith
flower position from the bottom to the top of inflorescences
(F1,109.2¼ 172.4, slope� SE¼�0.291� 0.022mm/relative posi-
tion: Fig. 1A). In addition, the daily rate at which new flowers
opened (anthesis rate) declined as inflorescences aged
(F1,800¼ 67.48, P<0.001; partial regression coefficient for
ln[inflorescence age]¼ -0.296� 0.036: Fig. 1B), after account-
ing for a positive effect of ln(total flower number)
(F1,800¼ 177.49, P< 0.001; partial regression
coefficient¼ 0.735�0.055).

Functional regression revealed significant phenotypic
selection on the within-inflorescence gradient of sepal-length
variation, as represented by penalized splines (X2¼ 23.14, 3.3
d.f., P< 0.001: Fig. 2). Plants with longer lower sepals on
flowers at the base (positions 1-2) and top (positions 6–7) of
the inflorescence produced more fruits than those with
shorter sepals at these positions (i.e., positive regression
coefficient). In contrast, the opposite pattern was apparent
formiddle flowers (positions 3–4), as plantswith longer sepals
in these flowers set fewer fruit. In addition, fruit production
varied significantly with ln(total flower number) (partial
regression coefficient� SE¼ 1.238�0.084, Z¼ 14.76,
P< 0.001). The adjusted R2 indicates that the fitted model
accounted for 72.3% of the overall among-plant variation in
fruit production.

Functional regression also detected significant phenotypic
selection on within-inflorescence variation in anthesis rate,
although the pattern of selection varied with the total
duration over which plants opened new flowers (X2¼ 120.77,
53.2 d.f., P< 0.001: Fig. 3). Regardless of the duration of the
anthesis period, plants that initially opened flowers quickly
produced more seeds than those that opened flowers slowly
(i.e., positive regression coefficients). Selection generally
weakened as plants opened more flowers, and for (few-
flowered) plants that opened flowers during four or fewer
days selection became negative. However, for plants that
opened flowers over six or more days selection again became
significantly positive as plants opened their last flowers
(Fig. 3B). Overall, the fittedmodel explained about 71.5% of the
among-plant variation in seed production.
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Based on estimates from 10 458 variable SNPs, genetic
relatedness varied extensively among the 110 individuals
sampled during 2014 (coefficient of genetic relatedness:
0.027–0.789). About 25% of the among-plant variation in
regression coefficients describing within-inflorescence varia-
tion in anthesis rate was associated with genetic relatedness.
Specifically, the narrow-sense heritability (�SE) for within-
inflorescence anthesis-rate gradient was 0.245�0.119
(P<0.05). In combination with the observed phenotypic

selection, this result demonstrates significant natural selec-
tion on the pattern of change in anthesis rate within
D. glaucum inflorescences.

5 Discussion
The preceding results demonstrate two approaches to the
analysis of systematic gradients of within-inflorescence
variation as function-valued traits: parameters as data, and
functional regression. The parameters-as-data approach
allowed assessment of genetic variation of within-individual
variation. Similarly, functional regression permitted quantifi-
cation of the effects of within-inflorescence gradients on
overall plant performance, and hence the characteristics of
phenotypic selection acting on architectural effects. These
approaches revealed patterns that are recalcitrant or
inaccessible with traditional statistical methods. For example,
the striking evidence of variation in selection on lower sepal
length within inflorescences (Fig. 2) could not have been
exposed without functional regression. Further, functional
data methods are necessary to characterize how selection on
anthesis rate depends on the number of days over which
plants opened new flowers (Fig. 3). Thus, recognizing that
systematic gradients of floral-trait variation represent func-
tion-valued traits enables unique, direct analysis of the genetic
determination, functional significance, and evolutionary
consequences of architectural effects.

At least for lower-sepal length and anthesis rate, pheno-
typic selection did not act equally along Delphinium glaucum
inflorescences, but rather varied with flower position and
inflorescence age. Functional regression indicated selection
favoring longer lower sepals on lower and upper flowers,
whereas selection favored shorter sepals on middle flowers
(Fig. 2). Similarly, inflorescences experienced strong selection
for faster initial anthesis, followed byweaker or even negative
selection, a pattern that was particularly evident for plants
that opened flowers during a relatively brief period (e.g., <5

Fig. 1. Variation of least-squares mean (�SE) A, lower sepal
length and B, anthesis rate (number of new flowers opened
per day) within racemes of Delphinium glaucum. Curves
represent the fits of generalized linear models. In A, relative
flower position identifies the seventh of the inflorescence
represented by sampled flowers, ranging from the bottom to
the top of inflorescences. In B, inflorescence age identifies the
number of days since the first flower opened on an
inflorescence.

Fig. 2. Estimated gradient of phenotypic selection (�95%
confidence interval) on lower sepal length within inflores-
cences of Delphinium glaucum. Relative flower position
identifies the seventh of the inflorescence represented by
sampled flowers, ranging from the bottom to the top of
inflorescences.
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days: Fig. 3A). Such heterogeneous selection along inflor-
escences likely reflects the various aspects of pollinator
interaction (Ohashi & Yahara, 2001; Ishii & Harder, 2012) and
mating-system consequences (Harder & Barrett, 1995; Harder
et al., 2004) associated with variation in flower and display
size. For example, opening more flowers per day when
inflorescences are young than during peak display may
maintain sufficient floral displays for pollinator attraction
while simultaneously limiting the negative effects of geito-
nogamy (Harder et al., 2004; Harder & Johnson, 2005;
Gallwey, 2011). Nevertheless, the occurrence of phenotypic
selection and its heterogeneity with respect to flower position
indicate that the prevailing gradients of within-individual
variation (Fig. 1) were not optimal; at least during the year that
sampling occurred. For example, selection favored an even
stronger gradient of lower sepal length for lower and middle

flowers, but a weaker gradient for upper flowers (Fig. 2).
Whether this incongruity reveals recent change in the
pollination and mating environment and/or the influence of
functional or development constraint is not apparent from
our analysis. As this example illustrates, the conclusion that
selection can vary within inflorescences suggests new
questions regarding the origin and function of this variation.
In particular, to what extent do such patterns of selection
shape variation caused by architectural effects?

Functional data approaches allow several advantages for
the analysis of systematic within-plant variation. The utility of
penalized spline fitting allows complete depiction of within-
inflorescence variation without a priori knowledge of the
pattern of variation (Goldsmith et al., 2011). In addition, spline
fitting and functional-trait smoothing techniques can accom-
modate missing observations (Reiss & Ogden, 2007) that
otherwise decrease the power of statistical inference.
Further, individuals within a population rarely produce the
same number of repeated units (e.g., flowers) that comprise
functional inflorescence traits. Variable-domain functional
regression accounts for heterogeneous predictor sizes among
inflorescences and importantly can capture how patterns of
variation change over different domain sizes (Gellar et al.,
2014).

The parameter-as-data approach used to characterize
variation and estimate heritability of anthesis rate is suitable
when gradients of variation can be described through
parametric regression. However, when parametric regression
does not adequately describe variation within all individuals,
functional data analysis approaches are required. For exam-
ple, the estimation of eigenvalues and eigenfunctions, that
are akin to traditional principal components analysis, may be
required to predict changes in the additive genetic covariance
matrix (Kingsolver et al., 2001; Stinchcombe et al., 2012). These
eigenfunctions highlight changes in functional traits that are
proportional to the underlying genetic variation, or a lack of
evolutionary capacity when genetic variation is limited.
Alternatively, deviations of models for individuals from an
overall population mixed model can be used to estimate the
genetic covariance matrix (Rice & Wu, 2001; reviewed in
Stinchcombe et al., 2012).

Functional data analysis techniques performwell withmany
data types that suffer from typical issues associated with
biological studies (e.g., missing data), but their application still
requires careful, thorough data collection. For example,
although measurement of seven flowers per plant allowed
assessment of the effect of relative flower position on
selection acting on lower sepal length, this sampling was too
sparse to apply the variable-domain method, given the total
number of flowers per inflorescence. Although we included
total flower number as a scalar covariate to account for its
overall effect on selection, this approach does not allow
assessment of the effect of flower production on the pattern
of selection within inflorescences. In general, the ability of
spline fitting to characterize within-individual variation
improves with the density of sampling within individuals
(regularization: see Morris, 2015). Finally, as with all paramet-
ric statistical methods, confidence in parameter estimation
improves as samples include more individuals (Morris, 2015).
Therefore, whereas functional data analysis techniques are
generally robust to variable sampling designs, overall

Fig. 3. A, Estimated gradients of phenotypic selection on
anthesis rate and B, associated Z values for Delphinium
glaucum plants that opened new flowers over periods of
indicated durations. In panel A, the ordinate range has been
limited to facilitate presentation of variation in regression
coefficients for the majority of plants, which opened flowers
over more than 4 days, truncating the illustrated range of
variation in the estimated regression coefficient for plants
that opened flowers for fewer than 5 days. In panel B, Z values
more extreme than the horizontal dashed lines (�1.96)
identify statistically significant selection.
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performance and robustness improve with more complete
representation of within-inflorescence variation and larger
samples.

Additional functional data methods not employed in this
study could also be relevant to the analysis of inflorescence
characteristics and performance. The functional regression
technique applied here to characterize phenotypic selection
on inflorescences used functional predictors (splines of lower
sepal length, anthesis rate) and a single (scalar) response
(fruit or seed set): scalar-on-function regression. Methods
are also available to evaluate the relation of a functional
response to one or more functional predictors, or a functional
response to scalar independent variables (Ramsay & Silver-
man, 2005; Morris, 2015; Goldsmith et al., 2016). For example,
these methods could respectively be used to assess position-
specific variation in performance (e.g., per-flower seed
number) with either functional predictors that represent
architectural effects (e.g., position-dependent variation in
traits of individual flowers) or whole-plant characteristics
(e.g., number of potential mates within a circumscribed area).
Finally, functional ANOVA provides a means of testing
whether mean functional responses differ among classes of
categorical independent variables, such as species or
experimental treatments (Barry, 1996; Cuevas et al., 2004).

Functional data techniques enable analysis of systematic
gradients of within-plant variation. Despite increased avail-
ability of these techniques (Morris, 2015) and their application
in other areas of biology (Stinchcombe et al., 2012), these
methods have yet to be applied to gradients of morphological
and phenological variation in plants, including architectural
effects. We therefore advocate the use of both the
parameters-as-data and functional regression approaches,
as appropriate, to address existing and novel hypotheses
concerning the function and evolution of inflorescence
characteristics.
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